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Abstract
While Intel SGX provides confidentiality and integrity guar-

antees to programs running inside enclaves, side channels

remain a primary concern of SGX security. Previous works

have broadly considered the side-channel attacks against SGX

enclaves at the levels of pages, caches, and branches, using a

variety of attack vectors and techniques. Most of these stud-

ies have only exploited the “order” attribute of the memory

access patterns (e.g., sequences of page accesses) as side

channels. However, the other attribute of memory access pat-

terns, “time”, which characterizes the interval between two

specific memory accesses, is mostly unexplored. In this paper,

we present ANABLEPS, a tool to automate the detection of

side-channel vulnerabilities in enclave binaries, considering

both order and time. ANABLEPS leverages concolic execution

and fuzzing techniques to generate input sets for an arbitrary

enclave program, constructing extended dynamic control-flow

graph representation of execution traces using Intel PT, and

automatically analyzing and identifying side-channel vulner-

abilities using graph analysis.

1 Introduction

Intel Software Guard eXtension (SGX) is a hardware addition

that is available in recent Intel processors. It offers both in-

tegrity and confidentiality to application software running in

a shielded execution environment—a secure enclave—even

when the entire operating system is untrusted. Recent work

has explored the use of Intel SGX for a variety of applications

such as secure cloud data analytics [25], smart contracts [44],

anonymity network [18], game hacking protection [7], and

unmodified code execution [8, 31], which have outlined a

promising future of SGX’s broad adoption in both server-end

and client-side computation.

Computer micro-architecture related side channels are not

new. Side-channel attacks that exploit micro-architectural re-

sources shared by mutually distrusting computing entities

(e.g., processes or threads) date back to the era of Pentium

4 [23, 24]. A malicious program or a virtual machine may

manipulate the shared micro-architectural resources, such

as CPU caches, branch prediction units, or function units,

to learn the pattern with which these resources are used

by the victim program and thereby infer secrets that dictate

such a usage pattern. Over the past decades, computer micro-

architecture has evolved drastically, but the issues of side

channels remain. What differ in the SGX context are two

fold: First, as SGX is designed to protect the confidential-

ity of applications that demand high levels of security, side

channels become a major security threats. Second, because

the adversary against SGX enclaves is assumed to have OS

system-level privileges, a wider range of attacks are enabled.

Particularly, over the past a few years, researchers have demon-

strated that secrets can be leaked from a variety of attack vec-

tors, such as branch prediction units [20], CPU caches [17],

paging structures [35, 38, 43], and DRAM row buffers [38].

Completely eliminating side channels from CPU chips

is unrealistic. Admitting this decades-old security concern,

Intel recommends developers take special care to avoid side-

channel vulnerabilities when writing enclave code [6]. How-

ever, developers are not experts of side channels and relying

on regular program developers to solve side-channel issues

is less promising. Moreover, there is no tool available that

helps the developers automatically identify improper coding

patterns in their enclave binaries.

In this paper, we aim to explore principles and techniques

that automatically identify side-channel vulnerabilities in en-

clave binaries that allow a side-channel attacker who is able

to observe execution traces of the control flow of an enclave

program to infer sensitive information inside the enclave. The

root cause of the vulnerability is the secret-dependent control

flows that are inherent in the enclave code. More specifically,

since side-channel attacks observe the runtime behavior of the

enclave programs, an intuitive approach for the vulnerability

identification would be to find a large set of secret values (e.g.,
input of the enclave program), run the enclave program with

these secret values, and collect the enclave’s execution traces

with respect to the control flow transfers (CFTs). The diversity
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of the collected execution traces for different secret values is a

viable indicator of the side-channel vulnerabilities—if all se-

cret values correspond to the same execution trace, the enclave

code is not vulnerable. With respect to the execution traces,

there are both spatial (i.e., order) and temporal (i.e. time)

differences. A comprehensive solution should include both.

However, it is non-trivial to develop such a comprehen-

sive approach for a number of reasons. First, how to generate

the valid secret values (e.g., program input) to expose the

execution traces at different granularity (e.g., branch, cache,

or page). Second, how to collect the execution traces, espe-

cially the temporal information associated with the traces.

We cannot use static analysis as it will not be able to resolve

secret-dependent CFTs, and meanwhile cannot collect the pre-

cise time information. While we can use dynamic analysis, we

still need to solve the coverage issues. Third, how to represent

the execution traces and perform the cross-comparison, espe-

cially when there are multiple execution traces. Finally, how

to quantitatively analyze the information leakage due to the

detected vulnerabilities. Fortunately, we have addressed these

challenges and built a tool dubbed ANABLEPS, by leveraging

concolic execution and fuzzing techniques to generate input

sets for an arbitrary enclave program, constructing extended

dynamic control-flow graph representation of execution traces

using Intel PT, and automatically analyzing and identifying

side-channel vulnerabilities using graph analysis.

We have tested ANABLEPS with 8 programs and libraries,

including text rendering, image processing, gnomic process-

ing, and deep learning. Our tool has discovered numerous

input leakage execution points for these programs. Our study

also suggests automated tools can identify the side-channel

vulnerabilities based on syntactic inputs and execution traces.

However, the semantics (i.e., the meaning) of the input is also

of critical importance especially for the exploitation of the

side-channel vulnerabilities.

Contributions. To summarize, the contributions of this paper

are as follows:

• A novel and comprehensive approach to detecting both

time-based and order-based control-flow side-channel

vulnerabilities for enclave binaries.

• A practical implementation integrating fuzzing, sym-

bolic execution, and hardware supported execution trac-

ing.

• The first large-scale analysis of sensitive control-flow

vulnerabilities for real world enclave binaries.

Roadmap. The rest of the paper is organized as follows. §2

presents necessary background knowledge including related

works to facilitate our discussion of the problem and our moti-

vation. In §3, we present the problem statement and a running

example to highlight our key insights. We detail our design

of ANABLEPS in §4. Then, we present how we implement

ANABLEPS and evaluate its effectiveness in §5. We also made

a number of case studies to understand the exploitability of

the vulnerabilities in §6. §7 discusses the limitation of the

approach and future research directions. Finally, §8 concludes

the paper.

2 Background and Related Work

Intel SGX. At a high level, Intel SGX is a set of new instruc-

tions for the x86 architecture. These instructions allow appli-

cation developers to protect sensitive code and data by utiliz-

ing a secure container called enclave [13]. The trusted hard-

ware establishes an enclave by protecting isolated memory

regions within the existing address space called Processor Re-

served Memory (PRM) to assure confidentiality and integrity

against other non-enclave memory accesses, including kernel,

hypervisor, and other privileged code. The confidentiality of

regions outside the PRM is protected by the memory encryp-

tion engine (MEE). Enclave programs with memory footprints

larger than that is allowed by RPM can make use of memory

regions outside the PRM via page swapping. Memory pages

swapped out of the RPM need to be encrypted by MEE.

SGX Side-Channel Attacks. Side channels are the Achilles’

Heel of Intel SGX’s confidentiality guarantees. In the past

few years, a variety of side-channel attacks have been demon-

strated against SGX enclaves, particularly from the CPU’s

memory management perspective. For instance, it has been

demonstrated that by controlling the present flag or the re-
served flags of the page table entries (PTEs) [29, 43], the

adversary could force the enclave program to trigger page

faults when accessing a memory page, thus extracting suf-

ficient amount of secrets (e.g., image contours, user input,

cryptographic keys). Most recently, it was shown that the

page table access patterns can also leak the enclave secrets

without actively triggering the page fault [35, 38], which can

be achieved by monitoring the accessed flag of the PTEs.

Other micro-architectural side-channel attack vectors

that have been studied on traditional hardware have also

been found exploitable in SGX. It has been demonstrated

that cache-based side-channel attacks can be migrated on

SGX [9, 15, 17, 26], which can be more powerful than

non-SGX settings. Branch prediction units have been demon-

strated to leak the branch history inside the enclaves [20].

DRAM row buffer contention has been exploited to steal

secrets from enclaves [38].

Most recently, Spectre [19], Meltdown [21], Fore-

shadow [32], and SGXPectre [10] attacks have been

demonstrated to leverage speculative execution and out-of-

order execution to read memory content protected by MMU

isolation. These attacks are out of scope of this paper as they

are micro-architecture vulnerabilities which cannot be solely

addressed from software.
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Existing Defenses. A number of enclave hardening tech-

niques have been proposed to mitigate these side-channel

attacks. To defeat page-level side-channel attacks, T-

SGX [28] uses the Transactional Synchronization Extensions

(TSX), DéJà Vu [12] relies on the execution time of the

enclave program path, SGX-LAPD [14] explores the internal

enclave data structures. To guard against cache side channels,

Gruss et al. [16] encapsulates snippets of enclave code into

hardware-supported memory, HyperRace [11] implements

contrived data races. Varys [22] also proposes to reserve

physical cores for secure enclave computation.

Closely related works to ours are Stacco [42], Mi-

croWalk [40], and DATA [39], all of which detect side-channel

vulnerabilities due to secret-dependent control flows. Particu-

larly, Stacco [42] uses Intel Pin tools to detect vulnerabilities

in SSL/TLS implementations, and it manually generates input

to the SSL libraries, and MicroWalk [40] focuses on vulnera-

bilities in Intel IPP and Microsoft CNG. Similarly, DATA [39]

only focuses on differential address trace analysis for crypto-

graphic primitives. In contrast, as ANABLEPS works on arbi-

trary enclave binary, it must generate the large volume of in-

put automatically and conduct vulnerability analysis without

known semantics. These new design challenges differentiate

our work and Stacco, DATA and MicroWalk. Outside the SGX

context, CacheD [37] is also relevant to our work. However,

in contrast to these works, ours considers more attack vectors.

3 Overview

3.1 Problem Statement and Definitions

The key objective of this work is to automatically identify the

side-channel vulnerabilities caused by the secret-dependent

control-flow transfers in the enclave programs. As enclave

programs are typically shipped to the hosting services in

the form of plaintext binary code, we anticipate the primary

secret that the enclave developer would like to hide is the

input to the enclave code. Therefore, the goal of the attacks

is to learn, through a variety of side channels (e.g., page

accesses [29, 35, 38, 43], cache eviction [9, 15, 17, 26, 33], and

branch prediction [20]), the input to the enclave programs.

However, most of these prior studies on SGX side channels

only consider the order attribute of memory access patterns,

i.e., which memory page (or cache set) has been accessed and

in what order. Few has exploited the time of memory accesses

as a side-channel vector. In fact, the first observation that time
and order are the two key attributes of a side (and covert)

channel can date back to the early 1990s [41]. As such, in our

work, we consider both, and broadly define that an enclave

program is vulnerable to side-channel attacks if different input

can lead to different traces from either the executing order
of each execution unit (e.g., an instruction) or the timing at

which each unit is visited.

Defining Side-Channel Vulnerabilities. More formally,

given an enclave binary program p, a concrete input to p
will lead to a concrete execution trace r, which is defined

as [(m0, t0),(m1, t1),(m2, t2), · · · ,(mk, tk)], where m j is the ad-

dress of the jth execution unit and t j is its timestamp relative to

the beginning of the execution. When the memory addresses

are normalized to be free of effects of randomization, for each

input, there is a corresponding trace r.

Definition 1 Given an enclave program p and an input Ii, the
mapping function E(p, Ii) = ri, where ri is the execution trace
of p under the input Ii. Similarly, for a set of input I , we define
the mapping function E(p,I ) = {ri|ri = E(p, Ii),∀Ii ∈ I )}.
The entire input space is denoted Ispace. Therefore, the entire
space of execution traces R = E(p,Ispace).
The mapping function E generates a program’s execution

trace under a specific input or a set of inputs, which allows us

to define side-channel vulnerabilities as follows.

Definition 2 Given an enclave program p and a set of input
I , the program is considered to be vulnerable to side-channel
attacks (under the input set I ) if and only if |E(p,I )|> 1; the
input set can be completely leaked through the side channels
if and only if |E(p,I )|= |I |.

Informally, we define an enclave program p is vulnerable

to side-channel attack if not all the input maps to the same

trace. That is, the enclave program’s execution is not input

oblivious. However, even though the program is vulnerable to

side-channel attack, the amount of leaked information can be

different. The complete leakage captures the case that every

input can be uniquely identified from the execution trace. It is

worth noting that the set of input I is a subset of the entire in-

put space Ispace, i.e., I ∈ Ispace. In most practical scenarios, it

is impossible to obtain Ispace. Therefore, the definition of side-

channel vulnerabilities is only meaningful when the program

and its input set is fixed. In this paper, we consider two types

of input set I : Isyntactic, the set of input generated automat-

ically from program analysis, and Isemantic, the set of input

provided by developers that are semantically meaningful.

Representing Execution Traces. To facilitate cross com-

parison of execution traces and directly pinpoint the secret-

dependent control flow transfer (CFT) that leaks the informa-

tion through side channels, execution traces need to be repre-

sented in proper data structures. String, in the form of linear

trace [(m0, t0),(m1, t1),(m2, t2), · · · ,(mk, tk)], however, is not

an optimal choice as it will be quite challenging to identify the

alignment (i.e., anchor) point from the string. In our design,

we choose to use a graph representation of the linear traces.

Definition 3 An extended dynamic control-flow graph (ED-
CFG) of a program p under input Ii ∈ I is defined as a di-
rected graph G =<N,E>, where ni ∈ N is a node of the
graph that represents a basic block of the CFG; and ei ∈ E is
a directed edge of the graph connecting two nodes that repre-
sents the dynamic CFT when p is executed with the input Ii.
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Also, each edge (ei ∈ E) has a counter wi (i.e., weight) to in-
dicate how many times the edge is executed. The information
of the program’s execution order and time is embedded in
each node ni ∈ N. Each ni ∈ N has two ordered lists: Order
= [ni

1,n
i
2, · · · ,ni

k], where ni
j is the jth successor of node ni

during the execution of p with input Ii; Time = [ti
1, t

i
2, · · · , ti

k],
where ti

j is the execution time to reach node ni
j.

An ED-CFG of an enclave program uniquely specify the

execution trace of the program under a given input. More

specifically, G i represents the execution trace in a graph rep-

resentation for the input Ii.

Execution Units in Side-Channel Attacks. An execution

unit in the context of a side-channel attack is defined as the

minimal single execution trace observable by attackers. For

the enclave program execution, an attacker can mostly achieve

the minimal execution unit at either cache level, or at page

level. Typically, it is hard to observe the single instruction

execution or basic block execution, but an attacker might be

able to do so at certain scenario (e.g., the branch shadowing

attack [20] and the Nemesis attack [34]). Therefore, in our

work we focus on the execution unit at page level (address

aligned with 4K bytes), at cache level (address aligned with

64 bytes)1, and at branch level.

Definition 4 A page-level ED-CFG, Gp, is a variant of G ,
where each node of Gp contains the page execution unit (i.e.,
all the executed instructions that belong to a particular page,
aligned with 212 bytes), and each edge connects the CFTs
between the pages. Similarly, we define the cache-level ED-
CFG, Gc, where each node contains the cache execution unit
and edge captures the CFTs at cache level.

Therefore, eventually for each input Ii, we will build G i first,

from which to derive G i
p and G i

c. To detect the vulnerabilities,

we will then cross compare G i, G i
p, or G i

c, respectively, for

all input Ii ∈ I . If a trace is different (in terms of time or

order of the specific execution units) among different user

input, we conclude the enclave program is vulnerable to the

corresponding side-channel attacks at different levels such as

at branch, cache, or page. Further analysis can be performed

on the graphs to quantify the vulnerability, or to identify the

leaking code segments.

3.2 A Running Example
Next, we would like to use a simple running example to illus-

trate how to use Gp to detect the time and order side-channel

vulnerabilities at the page granularity for the software running

inside the SGX enclave. Detecting basic block-granularity and

cacheline-granularity vulnerabilities is similar when given Gc.

In particular, we use the code snippet shown in Figure 1(d) as

1In this work, we simply model cache-based side-channel attacks on SGX

assuming that the attacker is able to monitor the execution of the enclave

program at the granularity of a 64-byte memory block. Interested readers can

refer to Wang et al. [38] for more detailed discussion on attack techniques.

a running example. This code snippet is a simplified version

of a barcode image processing function.

We notice in Figure 1(d) that this program takes three types

of inputs: character ‘1’, ‘2’, or an illegal input. The program

outputs two types of barcode, or an error message, accordingly.

More specifically, function main() calls function DrawBar()
if the input character is ‘1’ or ‘2’, otherwise returns an error

(and exit). Function DrawBar() is used to draw a barcode

on the canvas, and the weight of the canvas is decided by the

length of the barcode. Then for each column of the barcode, it

calls function DrawLine(), which calls the function Paint()
in a loop if the given position is to draw a line.

Trace Construction. By providing input I1 with ‘1’, I2 with

‘2’, and an invalid input Iinvalid, we get the corresponding

execution traces E(p, I1), E(p, I2), and E(p, Iinvalid),
from which to build G1, G2, and Ginvalid. As shown

in Figure 1(a)(b)(c), each node represents the executed basic

block, and each edge represents the CFT between the basic

blocks. We also assigned an index for each node for easier

locating them in the graph (e.g., n1 and n2). Two ordered

lists, Order and Time, associated with each node record

the successor nodes (in execution order) and the execution

time (in nanosecond ns) to reach them during execution.

For instance, in Figure 1(a), the Order list of node n6 is

[n4,n4, · · · ,n7, · · · ,n7, · · · ], which suggests that the execution

of the program will first follow the edge from n6 → n4

multiple times, then follow the edge from n6 → n7. The first

element of the Time list suggests the mean execution time

to reach node n4 for the first time is 0.8ns.

The corresponding page-level ED-CFGs (G1
p , G2

p , and

Ginvalid
p ) are illustrated in Figure 1(e)(f)(g). For instance,

the ED-CFG in Figure 1(a) can be converted to the page-level

ED-CFG in Figure 1(e) in the following steps: First, node

n1 and n7 of the original ED-CFG are both placed on page

0x804a , they are merged to a single node n1 in the page-

level ED-CFG. Similarly, node n2, n4, n5, and n6 are merged

into node n2 in page-level ED-CFG. Edges between nodes

of the same page are removed in the page-level ED-CFG;

those crossing page boundaries are preserved or merged. For

instance, the edge n2 → n3 becomes the new edge n2 → n3

in G1
p , and the edges n3 → n6 and n3 → n4 merges into the

new edge n3 → n2 in G1
p . We point out that it is not always

straightforward to convert ED-CFG to page-level ED-CFG.

Some basic blocks in ED-CFG may cross the page boundary.

Dealing with these pages require additional efforts, which we

will discuss in more details in §4.

Vulnerability Identification. By comparing the Gps (Gs or

Gcs), one can easily identify the side-channel vulnerabilities.

For instance, by comparing Figure 1(e) and Figure 1(f), it

can be seen that the two input values, ‘1’ and ‘2’, leads

to different page-level execution orders: the sequence of

n1 → n2 → n3 → n2 → n1 is repeated one more time when

the input is ‘1’. Figure 1(g) is very different from the other
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n0
main()

0x8049000
Order: {n1}

Time: {1200}

n1
DrawBar()
0x804a000

Order: {n2, n2, n2, n2, n2}
Time: {0.8, 0.7, 0.9, 0.7, 0.8}

1

n2
DrawLine()
0x804b000

Order: {n3, n3, n3, n3, n3}
Time: {0.9, 0.8, 0.9, 1.2, 0.9}

5

n3
ShouldDrawLine()

0x804c000
Order: {n4, n6, n4, n4, n6}

Time: {2.0, 2.3, 2.1, 2.1, 2.2}

5

n6
DrawLine()
0x804b090

Order: {n4, ..., n7,, n7, n4, ..., n7, n4, ..., n7, n7}
Time: {0.8, ..., 0.7, 0.9, 0.8, ..., 0.6, 0.7, ..., 0.8, 0.9}

n7
DrawBar()
0x804a080

Order: {n1, n1, n1, n1, n1}
Time: {1.3, 1.5, 1.4, 1.4, 1.5}

5

n4
DrawLine()
0x804b030

Order: {n5, n5, ..., n5}
Time: {3.2, 3.0, ..., 3.1}

297

5

2

3
n5

Paint()
0x804b800

Order: {n6, n6, ..., n6}
Time: {1.1, 1.2, ..., 1.0}

300

300

(a)

n0
main()

0x8049000
Order: {n1}

Time: {1200}

n1
DrawBar()
0x804a000

Order: {n2, n2, n2, n2}
Time: {0.8, 0.7, 0.9, 0.7}

1

n2
DrawLine()
0x804b000

Order: {n3, n3, n3, n3}
Time: {0.9, 0.8, 0.9, 1.2}

4

n3
ShouldDrawLine()

0x804c000
Order: {n6, n4, n4, n6}

Time: {2.0, 2.3, 2.1, 2.1}

4

n6
DrawLine()
0x804b090

Order: {n7, n4, ..., n7, n4, ..., n7, n7}
Time: {0.8, 0.7, ..., 0.8, 0.9, ..., 0.6, 0.8}

n7
DrawBar()
0x804a080

Order: {n1, n1, n1, n1}
Time: {1.3, 1.5, 1.4, 1.4}

4

n4
DrawLine()
0x804b030

Order: {n5, n5, ..., n5}
Time: {3.2, 3.0, ..., 3.1}

198

4

2

2
n5

Paint()
0x804b800

Order: {n6, n6, ..., n6}
Time: {1.1, 1.2, ..., 1.0}

200

200

(b)

n0
main()

0x8049000
Order: {n8}

Time: {1200}

n8
InvalidInput()

0x804d000
Order: {}

Time: {20}

1

(c)

1 void DrawLine ( i n t x , i n t content , charΛΛ
canvas ) {

2 i f ( ShouldDrawLine ( c o n t e n t ) ) {
3 f o r ( i =0; i <100; i ++) {
4 Paint ( canvas , x , i ) ;
5 }
6 }
7 }

9 void DrawBar ( charΛ barcode , i n t len , charΛΛ
canvas ) {

10 f o r ( x = 0; x< l e n ; x ++) {
11 DrawLine ( x , barcode [ x ] , canvas ) ;
12 }
13 }

15 void main ( i n t argc , charΛΛ argv ) {
16 i f ( input == ‘ 1 ’ ) {
17 barcode = { 1 , 0 , 1 , 1 , 0 } ;
18 }
19 e l s e i f ( input == ‘ 2 ’ ) {
20 barcode = { 0 , 1 , 1 , 0 } ;
21 }
22 e l s e {
23 I n v a l i d I n p u t ( ) ;
24 e x i t ( 1 ) ;
25 }
26 . . .
27 l e n = s i z e o f ( barcode ) / s i z e o f ( barcode [ 0 ] )
28 DrawBar ( barcode , len , canvas ) :
29 }

(d)

n0
main()
0x8049

Order: {n1}
Time: {1200}

n1
DrawBar()

0x804a
Order: {n2, n2, n2, n2, n2}

Time: {0.8, 0.7, 0.9, 0.7, 0.8}

1

n2
DrawLine() & Paint()

0x804b
Order: {n3, n1, n3, n1, n3, n1, n3, n1, n3, n1}

Time: {0.8, 320, 0.6, 0.7, 0.8, 310, 0.8, 315, 0.7, 0.6}

5 5

n3
ShouldDrawLine()

0x804c
Order: {n2, n2, n2, n2, n2}

Time: {2.0, 2.3, 2.1, 2.1, 2.2}

5 5

(e)

n0
main()
0x8049

Order: {n1}
Time: {1200}

n1
DrawBar()

0x804a
Order: {n2, n2, n2, n2}

Time: {0.8, 0.7, 0.9, 0.7, 0.8}

1

n2
DrawLine() & Paint()

0x804b
Order: {n3, n1, n3, n1, n3, n1, n3, n1}

Time: {0.8, 0.8, 0.7, 310, 0.8, 315, 0.7, 0.6}

4 4

n3
ShouldDrawLine()

0x804c
Order: {n2, n2, n2, n2}

Time: {2.0, 2.3, 2.1, 2.1, 2.2}

4 4

(f)

n0
main()
0x8049

Order: {n4}
Time: {1200}

n4
InvalidInput()

0x804d
Order: {}

Time: {20}

1

(g)

Figure 1: (a) G1, (b) G2, (c) G invalid , (d) Code snippet of our running example, (e) G1
p , (f) G2

p , and (g) G invalid
p

two Gps, easily differentiating Iinvalid from other input. We

can validate this vulnerability by scrutinizing the code in

Figure 1(d): Function DrawLine() is called five times when

input value is ‘1’, but four times when the value is ‘2’; the

main() exits directly with invalid input.

Interestingly, an adversary can also infer more useful knowl-

edge about whether a column in the barcode is a black line or

white line. More specifically, according to the implementation

of function DrawLine(), it will call function Paint() 100

times to draw a black line. Therefore, the execution time of

function DrawLine() is much longer when it draws a black

line in given position that of drawing a white line. With this

information, the adversary can successfully recover the con-

tent of barcode by collecting the execution time of the page

node on which function DrawLine() is placed. This vulner-

ability can be detected by scrutinizing the Time list of node

n2. Let n2.Time[k] denote the kth element of the Time list of

node n2 (the index of an element starts with 1). The execution

time to reach node n1 from n2, i.e., n2.Time[2], n2.Time[6],
n2.Time[8] of graph G1

p are significantly larger (> 300 ns)

than n2.Time[4] and n2.Time[10] (< 1ns). Therefore, it can

be inferred that the painted barcode is [1,0,1,1,0], which

correspond to input ‘1’.

3.3 Threat Model, Scope, and Assumptions

We assume the knowledge of at least the enclave binary code,

especially the code layout and mapping. We assume there

is no address space layout randomization (ASLR) with the

enclave binaries (such as SGX-Shield [27]). We assume the

adversary is capable of launching, resetting, and terminating

the targeted enclaves, and is in control of the entire operating
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system. This threat model is consistent to the controlled side-

channel attacks [43] and also many other side-channel attacks

against SGX enclaves [9, 15, 17, 26, 33].

Not all of the side channels are of our focus in this paper. In

particular, we focus on identifying the side channels through

branch, cache, page access behaviors, and timing information.

Other side channels such as hardware architecture caused side

channels (e.g., Meltdown [21] and Spectre [19]) are out of the

scope. Also, we focus on the side channels from code access,

and data access pattern caused side channel is out of scope.

4 Design

4.1 Input Generation
Since ANABLEPS uses dynamic analysis, it is important to

generate the concrete input that covers as much as possible

of the input space Ispace. Fortunately, we are not the first to

encounter such a problem, and many of the existing vulner-

ability identification tools all faces similar challenge. The

state of the art is to combine both concolic execution (a.k.a,

dynamic symbolic execution) and evolution fuzz testing (e.g.,
AFL [1]) together to generate the best set of Isyntactic (e.g.,
Driller [30]). Therefore, when design ANABLEPS, we use the

Driller approach and extend it for our purpose.

In particular, to start our analysis, we first use AFL [1] to

execute the enclave program. The input generated by AFL

is called Ifuzz. When fuzzing gets stuck and cannot explore

the program path further, we use concolic execution to solve

the path constraints and generate new input, which is called

Iconcolic. With the new input, we again let fuzzing execute

first and only when fuzzing gets stuck, we invoke the concolic

execution. When both fuzzing and concolic execution cannot

explore the program path further, we terminate the input

generation analysis.

During this stage execution, we have collected as many

as possible of the program traces, which are the best effort

to approximate R in the state of the art. and the minimal

possible concrete input Isyntactic = Ifuzz∪ Iconcolic we use

to expose these traces, denoted as E(p,Isyntactic), where

E(p,Isyntactic) ⊆ R. At this stage, for each Ii ∈ Isyntactic,

we have a corresponding ri ∈ E(p,Isyntactic). While we do

know |Isyntactic)| (since each Ii is unique), we do not know

|E(p,Isyntactic)| yet, since we do not know whether each ri
is unique or not.

4.2 Trace Construction
Next, we describe how the concrete execution traces

E(p,Isyntactic) were collected when running the enclave

program with each given input Ii ∈ Isyntactic, and also de-

scribe how we construct various ED-CFG representations

(e.g., G i,G i
p, and G i

c) that are suitable for the vulnerability

identification from E(p,Isyntactic).

Trace Collection. ANABLEPS requires collecting informa-

tion regarding both the execution order and time of an exe-

cution trace. There are a variety of approaches to collecting

these traces, such as using Intel Processor Trace (PT) and Last

Branch Records (LBR). The issue with LBR is that it only

has limited number of entries and branch records can be lost

if not collected in timely manners. Therefore, we use Intel PT

to conduct dynamic analysis. Intel PT is a hardware feature

available on recent Intel processors (i.e., Broadwell or later

families) to facilitate program debugging and performance

profiling. It collects the information of the CFTs of a program

with very small performance overhead. A useful feature of

PT is that it also records timestamps together with the CFTs,

and thus it perfectly fits the purpose of our design.

Although PT provides timestamps information of control

flow transfers, it does not provide fine-grained time informa-

tion of each execution unit, e.g., an instruction. Moreover,

because the Cycle Count (CYC) packets are generated right

before the event packets such as Taken NotTaken (TNT) pack-

ets, which may include taken or not taken information of up to

6 consecutive conditional branches, precisely recording exe-

cution time is not even possible at the basic-block granularity.

As such, ANABLEPS only approximates the execution time

in its construction of ED-CFGs, which will be detailed later.

Also, ANABLEPS sets the memory buffer large enough so that

no packet is lost during the dynamic analysis. The recorded

packets are then parsed and recorded in a log file, which will

be used for ED-CFG construction.

ED-CFG Construction. We generate the ED-CFG G i, for a

given input Ii and trace ri, based on the execution order and

time of each basic block tracked in the trace files by Intel

PT. Eventually, a D-CFG will be firstly built according to the

PT trace file, where each node represents a basic block, each

edge represents the CFT between the blocks, and the weight

of each edge represents how many times the corresponding

CFT has been executed.

Next, we add the execution order and time information into

D-CFG to make it become ED-CFG, namely G i, for input Ii.

More specifically, in each node, we use two lists to record

the execution order and time for every basic block. The order

list records the next node to jump to, and time list records the

execution time every time when current node gets executed.

The execution order is acquired by traversing the PT trace file

again. However, for the execution time of each basic block

each time when it gets executed, we have to approximate it

(get a lower bound and upper bound) since PT does not offer

fine-grained time recording for each basic block.

Resolving the execution time for each basic block. To get

the execution time for basic blocks, we have to rely on the

CYC packet, which is generated before each Mini Times-

tamp Counter (MTC) packet, TNT and Target IP (TIP) packet.

However, not all of CFTs between basic blocks will generate

a CYC packet as one TNT packet can capture up to six ba-
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sic block execution. Therefore, we have to approximate the

execution time for each basic block.

We take the following strategies to estimate the upper

bound and lower bound of the CPU cycles for a basic block.

The upper bound is an over-estimated execution time for each

basic block with the CPU cycles recorded in the CYC packet,

and the lower bound is the shortest CPU cycles in theory.

• Upper Bound. The upper bound of a basic block execu-

tion time is the CPU cycles recorded in the CYC packet,

regardless of the number of basic blocks the CYC packet

has covered.

• Lower Bound. The lower bound of a basic block execu-

tion time is the sum of the latency of the instructions that

belong to the basic block. The latency for each individual

instruction is acquired from [4].

While we cannot provide precise estimate of the execution

time for each basic block, fortunately, we will get the precise

PT recorded information for many of the basic blocks when

we merge them to generate G i
p and G i

c, based on page or cache

level execution unit if the basic blocks recorded by the TNT

packets actually belong to these execution units.

G i
p and G i

c Generation. Once we have built G i for each in-

put Ii, next we would like to derive G i
p and G i

c such that our

vulnerability identification can be performed. Since the dif-

ference between page level execution unit and cache level

execution unit is only the address alignment is different (212

vs. 28), in the following we just describe how we convert G i

to G i
p (G i to G i

c is similarly converted).

The conversion is straightforward, we need to combine all

the basic block nodes that belong to the same page into just

a single page node, and add the corresponding edges when

there is a CFT between the pages. Also, we have to split the

basic block that crosses two pages. To make our algorithm

simple, we just first get all of the page numbers for all of the

executed basic blocks by traversing G i, and then we traverse

G i again to add the edges between the pages, and to add

orders and timing on the page node. Especially, for timing

information, we discard our lower and upper bound timing

estimation for each basic block that was captured by the TNT

packet if they all belong to the same page.

We take a two step approach to convert G i to G i
p. The first

step is to generate the corresponding node and edge for G i
p

by traversing G i, and the second step is to traverse G i again

to generate the execution order and timing information.

• Generating nodes and edges. We design an algorithm

shown in algorithm 1 to illustrate this. At a high level,

we need to combine all the basic block nodes that belong

to the same page into just a single page node, and add the

corresponding edges when there is a control flow transfer

between the pages. Also, we have to split the basic block

that crosses two pages. To make our algorithm simple,

Algorithm 1: Generating the nodes and edges for G i
p

from G i

begin
G i

p.N ← /0
G i

p.E ← /0
foreach n ∈ G i.node() do

pgnum ← n.StartAddr() / 4096
G i

p.N ← G i
p.N ∪ {pgnum}

if n.StartAddr() / 4096 �= n.EndAddr() / 4096 then
pgnum ← n.EndAddr() / 4096
G i

p.N ← G i
p.N ∪ {pgnum}

G i
p.E ← G i

p.E ∪ {< pgnum−1, pgnum >}
w(pgnum−1, pgnum)← w(pgnum−1, pgnum) + 1

end
end
Ntmp ← {G i.Entry()}
repeat

n ← head(Ntmp)
pgnum ← n.StartAddr() / 4096
foreach ns ∈ n.successor() do

pgnext ← ns.StartAddr() / 4096
if pgnum �= pgnext then

G i
p.E ← G i

p.E ∪ {< pgnum, pgnext >}
w(pgnum, pgnext)← w(pgnum, pgnext) + 1

end
end
Ntmp ← Ntmp \ {n}
Ntmp ← Ntmp ∪ {n.successor()}

until Ntmp �= /0;

return G i
p

end

we just first get all of the page numbers for all of the

executed basic blocks by traversing G i, and then we

traverse G i again to add the edges between the pages.

The weights are updated accordingly when there is a

cross-page control flow transfer.

• Generating the order and timing. Once we have gen-

erated the nodes and edges for G i
p, we then generate

the order and timing information. The algorithm works

similar to algorithm 1 with the differences that we need

to record the new page order information, based on the

original order recorded in G i while traversing G i. Also,

for timing information, we will accumulate the recorded

timing information of the basic blocks that belong to the

same page based on the execution order. We will discard

our lower and upper bound timing estimation for each

basic block that was captured by the TNT packet if they

all belong to the same page.

4.3 Vulnerability Identification
ANABLEPS detects both order-based and time-based side-

channel vulnerabilities by cross comparing the corresponding

ED-CFGs. More specifically, comparing Gps reveals vulner-

abilities at the page-level, which can be exploited by an ad-

versary that monitors the enclave program’s page accesses

(through page faults or page table entry updates). Comparing

Gcs reveal vulnerabilities at the cache-level, which can be ex-
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ploited by an adversary that monitors the enclave program’s

cache accesses. Directly comparing Gs reveal vulnerabilities

at the basic-block level, which can be exploited by monitoring

the branch prediction units [20]. In the following, we use Gp
as examples to illustrate the process of vulnerability detection.

Order-based Vulnerability Detection. We compare every

G i
p with each other, the program is not vulnerable to page level

attack if the order information of every edge been accessed

in all G i
ps are the same. Otherwise, the attacker can infer

the secret based on the differences. The algorithm for graph

comparison is straightforward: G i
p = G j

p if and only if the

sets of node and edges are identical, including the Order
list in each node, and the execution counts in the edges. In

Figure 1(d)(e)(f), with different input, the execution order of

the nodes are different. For instance, by comparing nodes

n1 in G1
p and G2

p , the length of their Order lists is different,

which can clearly differentiate the two graphs.

Time-based Vulnerability Detection. When any two graphs

G i
p and G j

p, ∀Ii, I j ∈ I , are not vulnerable to order-based side

channels. ANABLEPS needs to further investigate time-based

vulnerabilities, by comparing the Time lists of the correspond-

ing nodes. The comparison of the Time lists is as follows:

The kth element of nl .Time in node nl in graph G i
p is com-

pared with the kth element of nl .Time in graph G j
p. However,

unlike comparison of the Order lists, where any difference

can directly conclude the comparison, comparing the Time
lists is more subtle. The execution time of a program can

be influenced by many reasons, such as on-demand paging,

caching, interrupts, etc.. In practice, each nl .Time[k] is a 2-

tuple (tmean, tstd), rather than a single value. The first element

of the 2-tuple is the mean execution time to reach the succes-

sor node from multiple runs and the second element is the

one standard deviation. With enough number of samples, the

impact from side effects can be reduced.

To generate (tmean, tstd) for the list Time of each node, the

program is executed with the same input Ii ∈ I L times; so

each nl .Time[k] (the kth element of nl) is also executed L
times. The mean and standard deviation are calculated using

these L execution time between node nl and its kth successor.

In our implementation, L = 10.

Determining the Input Space for G i. Since the edge in G i
p

(and G i
c) can correspond to the jumps in different locations

in the program, we can only use the one-to-one mapping

relationship between G i and Ii to determine the input space for

G i. In particular, for each concrete input Isyntactic ∈ {Ifuzz ∪
Iconcolic}, we run the concolic execution with this seed input

again, but we also track the corresponding path constraints for

this seed input. Once we have collected the path constraints,

we then use a constraint solver to solve the constraints. If no

other input satisfies (or the execution time of the solver takes

too much time to solve.2), it means the input is unique (Ii is

2We currently set up this time to be 90 minutes.

completely leakable). Otherwise, we have to use application-

specific knowledge to determine the leakage.

5 Evaluation

We have implemented ANABLEPS to detect the side-channel

vulnerabilities for x86 and x86-64 ELF binaries by integrating

and extending a number of open source tools. In particular,

we extend Driller [30], which is built atop of AFL [1] and

concolic execution, for Input Generation, and we use perf
to configure Intel PT and dynamically collect the runtime

information of each input. We built the PT packets decoder

based on the open source library, libipt [3]. The ED-CFG

construction and cross-comparison tool is built using python

scripts by analyzing the PT packets, and matching the de-

coded address to the binary code with pyelftools library [5].

To quantify the input space for a given trace, we extended

angr [36], an easily extensible python-based symbolic execu-

tion tool, to negate the constraints of the input we provide and

calculate the input space. The prototype of ANABLEPS will

be public available at github.com/OSUSecLab/ANABLEPS.

In this section, we present our evaluation results. We first

describe how we set up the experiment in §5.1, and then de-

scribe the experimental results in §5.2. All of our evaluations

are performed in Ubuntu Desktop 16.04LTS, running atop

Intel i7-7700 CPU, with 32G physical memory.

5.1 Experiment Setup
Benchmark Selection. Ideally we would like to use the SGX

programs for the test. However, there are not that many SGX

programs available, and therefore we run the legacy applica-

tions with library OS (e.g., Grephane-SGX [2]) support for

the evaluation. In particular, we selected 8 programs from a

variety of applications such as data analytics and machine

learning, image processing, and text processing. The name of

these programs is presented in the first column of Table 1.

Functionality Under Test. Each of the tested benchmark pro-

gram contains quite sophisticated functionalities. Certainly,

we cannot test all of their functionalities; we only tested the

functionality of our interest (shown in the 2nd column of

Table 1), based on our best understanding with the bench-

marks. For instance, when testing Genometools, we know

the genomic related program usually takes two types of input:

bed format and gff3 format. Converting between these two

formats is a widely used operation in genomes. Therefore, we

test the genome library libgenometools.so by converting

bed format to gff3 format.

Input Generation. To launch each of the testing program

with Driller [30], we provide the seed inputs based on our best

understanding of the program. Even with both AFL and con-

colic execution, we still cannot explore all the program paths.

We therefore configure Driller [30] to run 48 hours for each
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of the testing program. The number of syntactic inputs even-

tually generated are presented in the 3rd column of Table 1.

Trace Collection. With the input generated above, we run the

tested program traced by Intel PT. The tested program is run

outside of SGX in a debug mode. The execution time would

be similar to that of executing inside enclaves, because instruc-

tions executed in the enclave-mode and non-enclave-mode

have the same timing constraints (the main timing difference

happens at ECalls/OCalls). Each input generated a separate

trace file. The total size of the decoded PT trace file for each

program is presented in the 4th column of Table 1. Depending

on the size and input to the program, this size varies from a

few Gigabytes to several hundreds of Gigabytes.

5.2 Experimental Results

Next, we present how ANABLEPS detects the branch level,

page level, and cache level side-channel vulnerabilities based

on each individual trace and their corresponding input. As

we have described, from each input (and its corresponding

execution trace), we first built their ED-CFGs, namely G is,

which are used to detect the branch level side channels. The

total number of such ED-CFGs is presented in the 5th column

of Table 1. Compared to the 3rd column of Table 1, we can

notice that except for three benchmarks (namely Freetype,

QRcodegen, and Genometools), the total number of unique

G is are all smaller than the total number of the syntactic inputs

generated by ANABLEPS.

Detecting Order-based Side Channels. To detect order-

based side channels, we first cross-compare all of the G is

(G i
ps or G i

cs) to detect whether there is any unique Ii that maps

to a particular G i (G i
p or G i

c). As we are detecting order-based

side channels, only Order of the G is (G i
ps or G i

cs) are used in

the comparison. Many inputs have such a one-to-one mapping

G i ↔ Ii (G i
p ↔ Ii or G i

c ↔ Ii), which suggests that no other

input I j maps to the same G i. The branch-level, page-level

and cache-level statistics for this mapping is reported in the

6th column of Table 1, the 3rd column of Table 2, and the

8th column of Table 2, respectively. From the table, we can

notice that compared to the branch-level vulnerabilities, less

one-to-one mappings are detected in page-level and cache-

level. For instance, while all inputs of dA in deep learning

can be recovered by branch-level side channel, they cannot

be recovered by page-level side channels.

As the traces are dynamically collected, the node or edge

which can differ any two G is (G i
ps or G i

cs) must leak some

secret of interest. It is possible that many nodes or edges only

leak a partial secret. However, for some program, a set of

vulnerable nodes can be used together to leak the entire secret

(e.g., the Deep Learning case uses two nodes to leak the entire

secret). Moreover, it is also possible that part of leaked secret

can be used to infer the entire secret (e.g., the padding oracle

attack for crypto algorithms only need to know if the padding

is correct or not).

Detecting Time-based Side Channels. For those that have

multiple inputs corresponding to the same trace, i.e., one-to-N

mappings (G i → Iis, G i
p → Iis or G i

c → Iis), their statistics

are reported in the 8th column of Table 1, the 4th column of

Table 2, and the 9th column of Table 2, respectively. Next,

we use the timing information to further differentiate G i (G i
p

and G i
c) and see whether there is still one-to-one mapping

(i.e., G i ↔ Ii) after considering the timing differences. That

is, we hope to determine whether there are time-based side-

channel vulnerabilities when the program is not vulnerable to

order-based side channels. In practice, only large enough time

differences can be used to differentiate two traces. Therefore,

thresholds are defined from empirical results. We report under

three different threshold settings (i.e., with t1 = 2ns, t2 = 10ns,

and t3 = 20ns), the number of such one-to-one mappings, and

these results are reported in the last three columns of Table 1,

the columns 5 to 7 and columns 10 to 12 of Table 2. We notice

that it is relative hard to differentiate inputs based on timing

information at branch level. However, many inputs can be

further differentiated after applying time information at page

or cache level.

Determining Input Spaces. Previous experiments are based

on generated inputs Iis. However, not all inputs in the whole

inputs set are generated. Therefore, we would like to know

whether there is only one input Ii in the whole inputs set that

can map to a particular G i, that is, if |{I j|E(p, I j) = G i,∀ j ∈
I}|= 1, which can be determined by using concolic execution.

If so, then the input Ii can be differentiated by order-based

vulnerabilities. The total number of symbolic execution de-

termined input Ideterminstic is reported in the 7th column of

Table 1. We can see that for some applications, such as QR-

codegen and Deep learning, Ideterminstic is non-zero, mean-

ing at branch-level some inputs of these programs can be

uniquely identified by execution traces. For some applica-

tions, Ideterminstic is zero, indicating by the constraint solver

that there are other inputs that all have the same execution

traces with generated inputs, e.g., function Sort in gsl, al-

though |G i ↔ Ii| is non-zero (120 for gsl).

However, the concolic execution cannot finish for five

programs (marked with × in the Table), including Hunspell,

PNG, and Freetype, because of the limitation in either

computation power or physical memory space. For these

programs, ANABLEPS cannot answer if these execution

traces will completely leak the information of the input.

5.2.1 Performance Overhead

We also measured the performance of ANABLEPS, though

it is an offline analysis tool. We report the execution time

for each of the key component of ANABLEPS in Table 3.

More specifically, during the Input Generation (IG) phase,

USENIX Association        22nd International Symposium on Research in Attacks, Intrusions and Defenses 451



Detecting Branch Side Channel
Benchmark Functionality Trace Size |G i ↔ Ii|

Program under Test |Isyntactic| (GB) |G i| |G i ↔ Ii| |Ideteministic| |G i → Iis| t1 t2 t3

Deep Learning

dA 214 76.8 214 214 214 0 - - -
SdA 176 384.2 176 176 176 0 - - -
DBN 152 139.0 152 152 152 0 - - -
RBM 187 225.9 55 16 0 39 56 43 0

LogisticRegression 198 25.1 41 18 0 23 31 5 0

gsl Sort 220 2.8 154 120 0 34 0 0 0
Permutation 200 3.0 135 100 × 35 0 0 0

Hunspell Spell Checking 231 307.2 168 157 × 11 1 0 0

PNG Image Render 294 82.3 135 120 × 15 0 0 0

Freetype Character Render 206 352.6 206 206 × 0 - - -

Bio-rainbow Bioinfo Clustering 128 51.3 119 118 0 1 0 0 0

QRcodegen Generate QR Code 204 17.9 204 204 204 0 - - -

Genometools bed to gff3 convertion 201 382.4 25 12 × 13 0 0 0

Table 1: The benchmark programs, their concrete input size, the corresponding PT trace size, and the result of branch level side

channel detection

Detecting Page Side Channel Detecting Cache Side Channel
Benchmark Functionality |G i

p ↔ Ii| |G i
c ↔ Ii|

Programs Under Test |G i
p ↔ Ii| |G i

p → Iis| t1 t2 t3 |G i
c ↔ Ii| |G i

c → Iis| t1 t2 t3

Deep Learning

dA 127 12 65 52 9 214 0 - - -
SdA 112 5 33 28 0 176 0 - - -
DBN 128 9 15 11 0 152 0 - - -
RBM 28 15 56 43 0 55 16 56 43 0

LogisticRegression 6 9 82 24 0 18 23 82 24 0

gsl Sort 17 12 0 0 0 33 16 0 0 0
Permutation 100 2 0 0 0 100 2 0 0 0

Hunspell Spell Checking 156 11 5 2 2 157 11 7 7 7

PNG Image Render 103 25 1 1 1 111 22 10 6 0

Freetype Character Render 206 0 - - - 206 0 - - -

Bio-rainbow Bioinfo Clustering 39 9 1 0 0 118 1 0 0 0

QRcodegen Generate QR Code 204 0 - - - 204 0 - - -

Genometools bed to gff3 convertion 5 8 5 5 3 5 8 5 5 3

Table 2: The page level and cache level vulnerability detection results for the tested benchmark programs

Benchmark Functionality IG TC VI CS
Programs Under Test (h) (h) (m) (h)

Deep Learning

dA 48 26.1 7.9 31.3
SdA 48 187.2 61.7 132.1
DBN 48 63.3 43.8 82.3
RBM 48 110.1 13.2 45.9

LogisticRegression 48 7.2 1.8 8.4

gsl Sort 48 0.62 0.2 2.5
Permutation 48 0.57 0.2 -

Hunspell Spell Checking 48 68.2 4.4 -

PNG PNG Image Render 48 19.8 1.6 -

Freetype Character Render 48 87.4 19.8 -

Bio-rainbow Clustering bioinformatics 48 14.2 20.9 58

QRcodegen Generate QR Code 48 8.89 22.4 126

Genometools bed to gff3 convertion 48 192.6 15.2 -

Table 3: Performance overhead for running each component

of ANABLEPS the tested programs. IG stands for Input Gen-

eration, TC stands for Trace Construction, VI stands for Vul-

nerability Identification, and CS stands for Constraint Solver

we configured ANABLEPS to run 48 hours for all of the

benchmarks. Then, our Trace Construction (TC) component

decodes the trace, builds each G i, G i
p, and G i

c. For the

Vulnerability Identification (VI), ANABLEPS just performs

the cross-comparison with the graphs we have built. Only

when detecting the branch-level side channel, we invoke

Constraint Solver (CS) to determine whether there is a unique

input for a specific trace. This execution time is reported in

the last column of Table 3. For certain programs that concolic

execution cannot finish (marked with ‘-’ in the Table), we

cannot evaluate their performance overhead. We can notice

that the bottleneck of the ANABLEPS is Trace Construction

and Constraint Solver, which are affected by the size of

execution trace files and computation power.

6 Exploitability of the Vulnerability

So far, we have discussed the design, implementation and

evaluation of ANABLEPS in automatically detecting order and

time based side-channel vulnerabilities. However, automated

tools can only provide syntactic-level analysis. Oftentimes,

such analysis cannot be directly translated into exploitability

of the program, especially when the input space of interest

(to the attackers) cannot be automatically determined. In this

section, we discuss how ANABLEPS can be used by enclave

program developers to analyze the exploitability of the vulner-

abilities by providing the proper input, locating and exploiting

the vulnerabilities.
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6.1 Developer-assisted Vulnerability Analysis
Developer-supplied Input. While the automated syntactic

analysis has provided a large number of inputs, not all of

them are of interest to attackers. For instance, in the PNG ex-

ample, not all input correspond to valid images; it is not very

interesting to determine the errors in the PNG file formats. In

practice, only software developers are able to identify the true

secretive set of input that they would like to make indistin-

guishable. This is called semantic-level analysis. Developers

may select the set of inputs I that she wishes to be indistin-

guishable from the execution traces and use ANABLEPS to

analyze E(p,I ).
The steps to perform such an analysis is similar to auto-

mated analysis described in §4. The only difference is that the

Input Generation step and “determining input spaces for G i”

of the Vulnerability Identification step can be skipped, as the

set of input of interest is now provided by the developers. The

output of the analysis would be |G i ↔ Ii| that can be differ-

entiated by order or time information of the execution traces.

Locating Vulnerabilities. Given a secretive set of input I , if

|E(p,I )|> 1, we would like to find the set of nodes in G that

can be used to learn the inputs. That is, we would like to locate

the vulnerabilities (i.e., vulnerable node) in the graph and the

program. With the method discussed in §4, we can differenti-

ate order-based vulnerable nodes and time-based vulnerable
nodes. The capability to easily locate vulnerabilities is one

benefit of adopting ED-CFG to represent execution traces.

With the input set of Isyntactic, the statistics of the vulner-

able nodes are shown in Table 4. The cache-level statistics

are listed in the column 3 to 5, and the page-level statistics

are reported in column 6 to 8. The total numbers of nodes

in G i
c and G i

p are shown in column 3 and 6; the numbers of

order-based vulnerable nodes are listed in column 4 and 7;

and the numbers of time-based vulnerable nodes are listed in

column 5 and 8, respectively. In the Table 4, the time-based

vulnerable nodes are mutually exclusive with the order-based

vulnerable nodes. According to the results presented in Ta-

ble 4, ANABLEPS narrows down the number of nodes to be

examined for side-channel vulnerabilities dramatically. On

average, the number of order-based vulnerable nodes is only

18% of all nodes in Gc, and 37% of all nodes in Gp; the num-

ber of time-based vulnerable nodes is only 6% of all nodes

in Gc, and 13% of all nodes in Gp. The fraction of vulnerable

nodes can be further reduced with a developer-supplied input

set that is of interest.

6.2 Case Studies of the Exploitability Analysis

In this section, we briefly summarize three interesting cases

to show how ANABLEPS can help enclave developers identify

side-channel vulnerabilities that can be exploited to extract

sensitive information.

1 i n t b inomial ( i n t n , double p ) {
2 . . .
3 f o r ( i =0; i <n ; i ++) {
4 r = rand ( ) / (RAND_MAX + 1 . 0 ) ;
5 i f ( r < p ) c ++;
6 }
7 . . .
8 }

11 void dA_get_corrupted_input (dAΛ t h i s , i n t Λx , i n t Λt i l d e _ x , double p )
{

12 i n t i ;
13 f o r ( i =0; i < t h i s −>n _ v i s i b l e ; i ++) {
14 i f ( x [ i ] == 0) {
15 t i l d e _ x [ i ] = 0 ;
16 } e l s e {
17 t i l d e _ x [ i ] = binomial ( x [ i ] , p ) ;
18 }
19 }
20 }

Figure 2: The deep learning vulnerable code

6.2.1 Deep Learning Algorithms

According to Table 2, there are 214 different inputs for algo-

rithm dA that has unique Gc, i.e., G i
c ↔ Ii. Therefore, poten-

tially the vulnerabilities in dA may lead to exploitable infor-

mation leakage. In order to start analyzing the vulnerabilities

in dA algorithm, we first manually selected inputs that might

be of interest to attackers: a set of |I | training data that differ

only in values. Then, we feed these inputs to ANABLEPS. The

output of ANABLEPS indicates that all selected inputs have

unique cache-level execution traces, i.e., |E(p,I )|= |I |.
After locating the vulnerable nodes and some man-

ual effort to examine the identified vulnerable nodes,

we find the leakage primarily comes from function

dA_get_corrupted_input(), which has a for loop that

enumerates every element of array x and calls function

binomial() if the element is not 0. The code snippet is shown

in Figure 2.

The execution of dA_get_corrupted_input() and

binomial() may be exploited to leak training data infor-

mation. Whether or not function binomial() is called by

dA_get_corrupted_input() reveals the value of array x.

The function call sequence can be learned through cache-

level side channels. The two functions are located in the same

page but different cachelines. After compilation, the for loop

in dA_get_corrupted_input() is compiled into two cache-

lines, denoted m1 and m2, function binomial() is compiled

into two consecutive cachelines. We denote the first cache-

line as m3. Therefore, if the ith element of array x is 0, the

order of the executed cachelines is [m1,m2]; otherwise, the

execution order becomes [m1,m2,m3,m2]. This order-based

side-channel vulnerability on the cache-level can completely

leak the training data of the deep learning algorithm.

6.2.2 Freetype Font Engine

According to Table 2, there are 206 inputs that have unique G i
p.

To validate the page-level vulnerability, we generated some

printable characters as input and fed them to ANABLEPS. The

result indicates that every input corresponds to a unique G i
p.
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Cache Level Page Level
Functionalities #Order-Based #Time-Based #Order-Based #Time-Based

Programs Under Test #Nodes Vulnerable Nodes Vulnerable Nodes #Nodes Vulnerable Nodes Vulnerable Nodes

Deep Learning

dA 69 9 4 13 2 3
SdA 109 12 21 22 3 3
DBN 126 17 81 14 3 10
RBM 68 8 27 13 2 7

LogisticRegression 48 2 16 11 0 7

gsl Sort 31 12 0 11 5 0
Permutation 99 30 0 29 15 0

Hunspell Spell checking 302 48 9 47 27 10

PNG PNG Image Render 640 170 90 53 39 2

Freetype Character Render 1054 263 18 82 20 13

Bio-rainbow Bioinfo Clustering 214 16 0 24 2 1

QRcodegen Generatee QR 176 32 18 15 6 3

Genometools bed to gff3 convertion 1901 231 9 147 53 5

Table 4: Locating vulnerable nodes in Gc and Gp

1 s t a t i c vo id p s h _ g l y p h _ i n t e r p o l a t e _ s t r o n g _ p o i n t s ( . . . ) {
2 . . .
3 f o r ( ; count >0; count−−, p o i n t ++) {
4 . . .
5 i f ( psh_point_ i s_edge_min ( p o i n t ) )
6 point−>cur_u = . . . ;
7 e l s e i f ( psh_point_ is_edge_max ( p o i n t ) )
8 point−>cur_u = . . . ;
9 e l s e {

10 data = . . . ;
11 i f ( d e l t a <=0)
12 point−>cur_u = FT_MulFix ( . . . ) + . . . ;
13 e l s e i f ( d e l t a >= hint −>org_ len )
14 point−>cur_u = FT_MulFix ( . . . ) + . . . ;
15 e l s e
16 point−>cur_u = FT_MulDiv ( . . . ) + . . . ;
17 }
18 p s h _ p o i n t _ s e t _ f i t t e d ( p o i n t ) ;
19 }
20 }

Figure 3: The freetype vulnerable functions

ANABLEPS has helped us identify the vulnerable nodes.

In fact, there are more than one vulnerable nodes. To

illustrate these vulnerabilities, we explain the leakage

through function psh_glyph_find_strong_points() at

the page level. The code snippet is shown in Fig-

ure 3. psh_glyph_interpolate_strong_points() in-

cludes a loop to interpolate every strong point into the

glyph. Adversaries can recover the strong points po-

sition according to the page sequence. More specifi-

cally, function psh_point_is_edge_min() is placed in

page m1. Functions FT_MulFix() and FT_MulDiv() are

placed in another page, denoted m2. The page of func-

tion psh_glyph_interpolate_strong_points() is de-

noted m3. The access order of these pages leaks informa-

tion of the interpolated point: When a point is not marked

as a strong point, the order of page access is [m3]; when

the strong point is located in the edge, the order of page ac-

cess is [m3,m1,m3,m1,m3]; otherwise, the sequence would be

[m3,m1,m3,m2,m3,m1,m3]. Given the sequence of this func-

tion, the attacker can learn whether each point is strong or not.

Though the example does not completely leak the content of

the data, it illustrates how leakage can be identified.

1 8050920 < get_parser >:
2 . . .
3 8050 b05 : 89 1 c 24 mov %ebx ,(% esp )
4 8050 b08 : 83 c3 02 add $0x2 ,%ebx
5 8050 b0b : e8 e0 63 00 00 c a l l 8056 e f 0 <

_ u n g u a r d e d _ l i n e a r _ i n s e r t >
6 8050 b10 : 39 de cmp %ebx,% e s i
7 8050 b12 : 75 f1 jne 8050 b05 < g e t _ p a r s e r +0x1e5 >
8 . . .

11 8056 e f 0 < _ u n g u a r d e d _ l i n e a r _ i n s e r t >:
12 . . .
13 8056 f28 : 89 c2 mov %eax ,%edx
14 8056 f2a : 89 d8 mov %ebx,%eax
15 8056 f 2 c : 0 f b7 18 movzwl (%eax ) ,%ebx
16 8056 f 2 f : 66 89 1a mov %bx ,(% edx )
17 8056 f32 : 0 f b6 50 f f movzbl −0x1(%eax ) ,%edx
18 8056 f36 : 8d 58 f e l e a −0x2(%eax ) ,%ebx
19 8056 f39 : 0 f b6 70 f e movzbl −0x2(%eax ) ,% e s i
20 8056 f3d : c1 e2 08 s h l $0x8 ,%edx
21 8056 f40 : 01 f2 add %e s i ,%edx
22 8056 f42 : 66 39 ca cmp %cx,%dx
23 8056 f45 : 77 e1 ja 8056 f28 <

_ u n g u a r d e d _ l i n e a r _ i n s e r t +0x38 >
24 . . .

Figure 4: The assembly code of std::sort

n0
get_parser()

0x8050
Order: {n1, n1, n1, n1}

Time: {0.9, 0.8, 0.9, 0.8}

n1
_unguarded_linear_insert()

0x8056
Order: {n0, n0, n0, n0}
Time: {6, 13, 19, 18}

4
4

Figure 5: A subgraph of Gp for function std::sort

6.2.3 Hunspell

Hunspell is a popular spell checker. Xu et al. identified

that Hunspell is vulnerable to page-level controlled chan-

nel attacks due to its input-dependent access pattern to data

pages [43]. But its control flow was considered immune to

side-channel attacks. However, as shown in Table 2, AN-

ABLEPS identifies various control-flow side-channel vulnera-

bilities that may be exploited by attackers.

With the help of ANABLEPS, we narrow down our atten-

tion to the get_parser() function of Hunspell, in which the

function std::sort(vector.begin(), vector.end()) is

called to sort the data in the vector. We found this function

both have cache-level and branch-level order-based vulnera-

bility and page-level time-based vulnerability. This is a func-

tion implemented in C++ standard library. After compilation,
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the linear insertion algorithm is used in this sort function

with the snippet of assembly code in Figure 4. According

to the code snippet of function get_parser(), the function

_unguarded_linear_insert() is called when an element

in the unsorted vector is to be inserted into the sorted vector.

As such, by monitoring the execution sequence that involves

this function, the attacker is able to learn the number of el-

ements to be sorted in page-level, cache-level and branch-

level. Moreover, function _unguarded_linear_insert()
contains a loop to compare the element to be inserted with

elements already in the sorted vector. According to the

insertion sort algorithm, the number of loops in function

_unguarded_linear_insert() reflects the number of com-

parisons during the insertion, which can be used to infer the

location of an element after the insertion.

Such leakage can be easily identified in Gps with time-

based vulnerability. A subgraph of G i
p of a particular input

Ii is shown in Figure 5. The edge n0 → n1 is executed 4

times, which reflects that four elements are being sorted.

The elements of Time list in node n1 reveals the number of

comparisons in function _unguarded_linear_insert():

the first element corresponds to no comparison, the second

element corresponds to 1 comparison, the third and fourth

elements correspond to 2 comparisons. Therefore, the page

level order-based vulnerability in Hunspell, or more precisely

the sort algorithm implemented in the standard C++ library,

can only leak the number of elements to be sorted; however,

the time-based vulnerability can be exploited to leak the list

to be sorted if sorting result is known. We specially tested the

sort algorithm by providing a set of |I | unsorted lists that

correspond to the same sorted list after sorting. As expected,

ANABLEPS reports |E(p,I )|= |I | for this set of inputs.

7 Limitations and Future Work

Although we have demonstrated that ANABLEPS is capable

of identifying side-channel vulnerabilities in enclave binaries,

we only made a first step and there are a number of avenues

for future works. First, the currently design only considers

side-channel vulnerabilities due to secret-dependent control

flows. Leakages due to secret-dependent data accesses are

out of scope currently. Interestingly, the differences in the

data access pattern caused by divergence in the control

flow can actually be identified by ANABLEPS’s control-flow

based vulnerability analysis. What is missed by ANABLEPS

is memory pointers or array indexes that are determined

by the secret values. One of the future works is to extend

ANABLEPS in handling of these vulnerabilities.

Second, while ANABLEPS has integrated the state-of-the-

art input generation tools such as fuzzing and concolic exe-

cution, it still cannot generate the complete set of input. Cur-

rently, we rely on developers’ knowledge to remediate this

limitation since developers have the best understanding of the

semantic of the enclave program and its input space. Certainly,

any advances in the research of test case generation itself will

improve ANABLEPS.

Third, the capability of the constraint solver is limited.

Given an input to a program, ANABLEPS relies on symbolic

execution to collect constraints. These constraints are solved

by a constraint solver to determine the size of G i’s input

space. However, not all the constraints can be solved (e.g.,

hash functions). Also, a solver may take too much time to

solve a constraint. Currently, ANABLEPS requires the solver

to return the result in 90 minutes. Otherwise, it considers

unsolvable. Any advancement of constraint solver will make

ANABLEPS more efficient.

8 Conclusion

In conclusion, we designed and implemented ANABLEPS, a

software tool for automatically vetting side-channel vulner-

abilities in SGX enclave programs. ANABLEPS is the first

side-channel vulnerability analysis tool that considers both

time and order of a program’s memory access patterns. It

leverages concolic execution and fuzzing techniques to gen-

erate input sets for an arbitrary enclave program, constructs

extended dynamic control-flow graph representation of exe-

cution traces using Intel PT, and automatically analyzes and

identifies side-channel vulnerabilities using graph analysis.

With ANABLEPS, we have uncovered a large number of side

channel leaks in enclave binaries we tested. Our experimen-

tal results also demonstrate ANABLEPS can be used by both

security analysts and software developers to identify the side-

channel vulnerabilities for enclave programs.
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